Your current web browser is outdated. For best viewing experience, please consider upgrading to the latest version.
ERROR
Main Error Mesage Here
More detailed message would go here to provide context for the user and how to proceed
ERROR
Main Error Mesage Here
More detailed message would go here to provide context for the user and how to proceed
search DONATE
Close Nav

What It Will Take To Make The Energy Transition Happen

back to top
commentary

What It Will Take To Make The Energy Transition Happen

RBN Energy July 18, 2022
Energy & EnvironmentOther

When you boil it down, there are only two energy-related responses to Russia’s war on Ukraine. First, there’s a big push to find sources of crude oil, refined products, natural gas and NGLs to replace Russian supplies as quickly as possible. Second, governments on both sides of the Atlantic are scrambling to reaffirm and even expand commitments to lower-carbon energy sources to delink from Russian hydrocarbons as well as meet energy transition goals. Both raise the same question: How fast can the world bring online any new sources of energy on the scale needed? Policymakers would like to believe the answer can be found through the stroke of a legislative pen invoking aspirational language. No one doubts the power of that pen to create incentives or impediments. But the answer to that question is dictated by the realities of the physical world. In today’s RBN blog, we discuss the options for accelerating the availability of the minerals, metals and other materials needed to build the required machinery for the energy transition.

As we said in Part 1, all the favored energy-transition technologies — solar, wind and batteries — require a lot more stuff to be mined, refined, fabricated and constructed to replace the same amount of energy provided by the hydrocarbon-based energy infrastructures that power the world today. In many cases, we’re talking about an unprecedented 3x to 70x increase over today’s use of not only a wide array of metals such as copper, nickel, aluminum, lithium and neodymium, but also a 10x jump in the use of basic materials such as steel, glass and concrete.

Continue reading the entire piece here at RBN Energy

______________________

Mark P. Mills is a senior fellow at the Manhattan Institute; a partner in Cottonwood Venture Partners, an energy-tech venture fund.

Photo by Alfio Manciagli/iStock

Saved!
Close